

PRINCIPALE OF PHARMACODYNAMIC

Lecturer: Dr. Chuon Vibol, Pharm.D, MIPH/Msc.

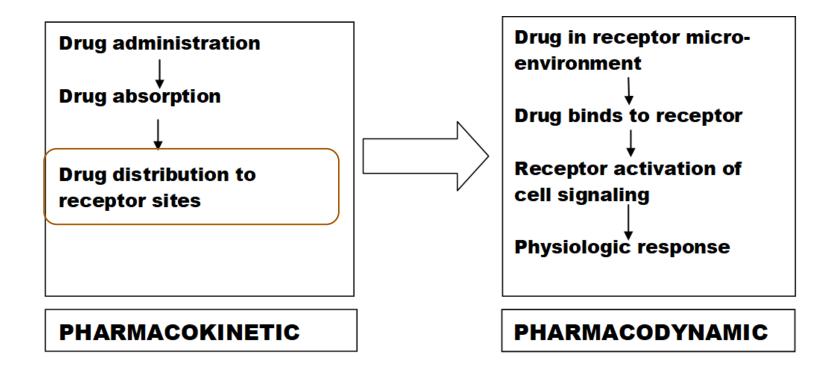
Academic Year: 2021 - 2022

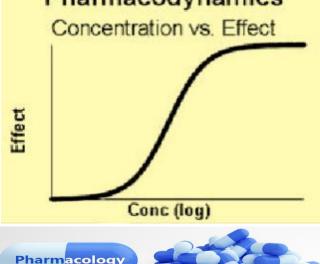
Dr. Chuon Vibol - General Pharmacology-Dentistry/UP

Learning Objectives

After completion of this section, students will be able to:

- The different types of receptors at which drugs can act
- The concept of affinity and those factors that cause a drug to bind to a receptor
- The difference between full and partial agonists
- The definitions of potency and efficacy
- The definition of ED50
- How it differs from an irreversible receptor agonist
- The definition of LD50
- The concept of a therapeutic index and how it is calculated




Pharmacodynamics and Drug Receptors (how drugs work on the body)

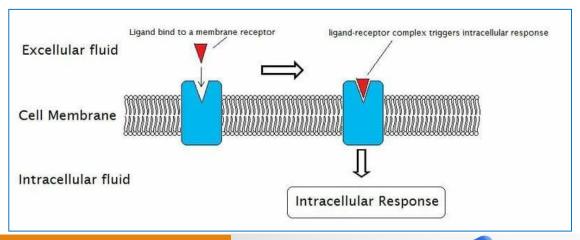
The <u>action of a drug on the body</u>, including receptor interactions, doseresponse phenomena, and mechanisms of therapeutic and toxic action. Pharmacodynamics

Pharmacodynamics and Drug Receptors (how drugs work on the body)

- Many drugs inhibit enzymes:
- Enzymes control a number of metabolic processes
- A very common mode of action of many drugs
 - > in the patient (ACE inhibitors)
 - in microbes (sulfas, penicillins)
 - \succ in cancer cells (5-FU, 6-MP)
- Some drugs bind to:
 - \succ proteins (in patient, or microbes)
 - \succ the genome (cyclophosphamide)
 - \succ microtubules (vincristine)

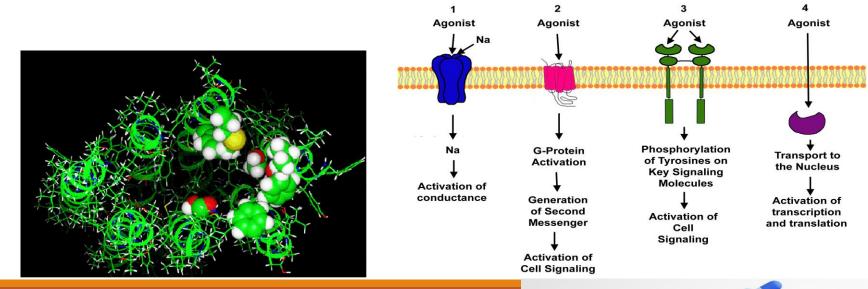
Pharmacodynamics and Drug Receptors (how drugs work on the body)

- * Most drugs act (bind) on receptors
 - \succ in or on cells
 - ➢ form tight bonds with the *ligand*
 - exacting requirements (size, shape, stereospecificity)
 - can be agonists (salbutamol), or antagonists (propranolol)
- * Receptors have signal transduction methods

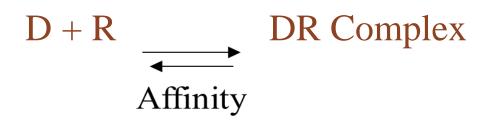


Drug Receptor

- Any cellular macromolecule to which a neurotransmitter or drug binds to initiate its effects.
- The endogenous function of a receptor is to participate in neurotransmission or physiologic regulation.
- Usually a protein.



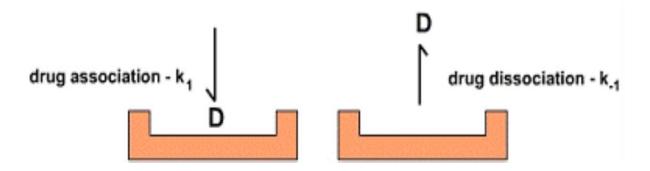
Types of Protein Receptors


- 1. Regulatory change the activity of cellular enzymes
- 2. Enzymes may be inhibited or activated
- 3. Transport e.g. Na^+/K^+ ATP'ase
- 4. Structural these form cell parts

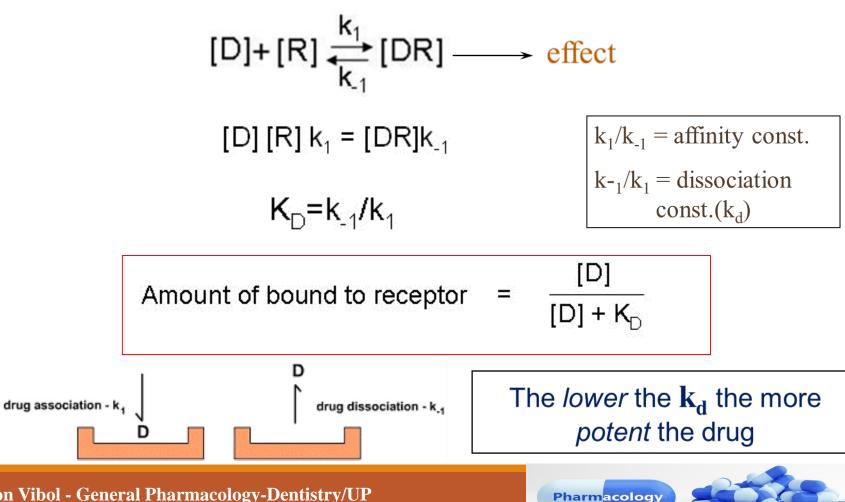
Pharmacology

Affinity is a measure of the tightness with which a drug binds to the receptor.

Intrinsic activity (Efficacy) is a measure of the ability of an agonist that is bound to the receptor to generate an activating stimulus and produce a change in cellular activity.


- 1) Both agonists and antagonists can bind to a receptor. However, only agonist molecules can activate the receptor.
- 2) Using the symbol e to represent intrinsic activity the physiologic response of a drug can be described by the equation below:

Physiologic response =(e) X (the # of receptors occupied) or =



- 1) Affinity describes the strength of binding to receptors.
- 2) $\mathbf{k_1}$ describes the rate at which a drug associates with the receptor while $\mathbf{k_{-1}}$ describes the ease at which a drug dissociates from its receptor.

Pharmacology

Amount bound to receptor =

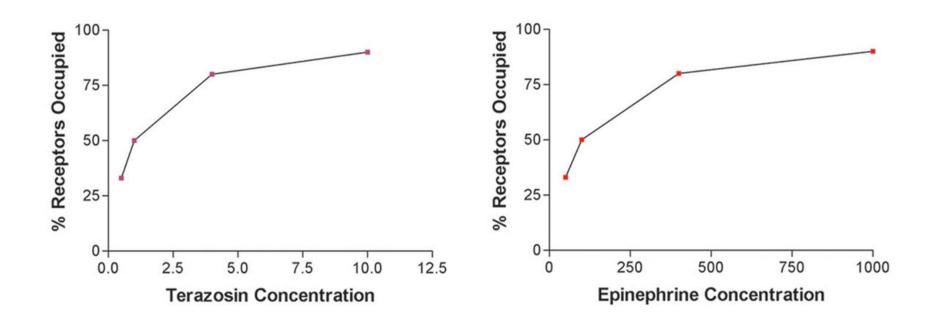
[D]+KD

Terazosin has an equilibrium dissociation constant of **1.0 nM**.

Calculate the percentage of receptors occupied at each Terazosin concentration

Terazosin	% Receptors Occupied
0.5 nM	?
1.0 nM	?
4.0 nM	?
10.0 nM	?

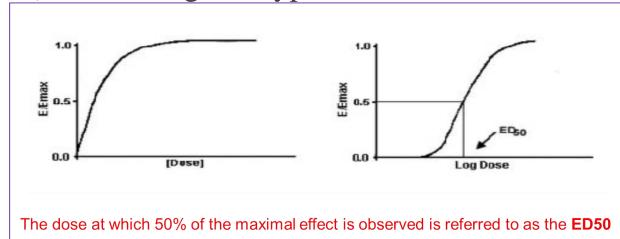
Dr. Chuon Vibol - General Pharmacology-Dentistry/UP


Amount bound to receptor	=	[D]
		[D]+KD

Terazosin at:	% Receptors Occupied
0.5 nM	33 %
1.0 nM	50 %
4.0 nM	80 %
10.0 nM	90 %

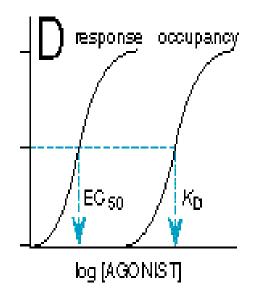
50% OF RECEPTORS WILL BE OCCUPIED WHEN A DRUG IS GIVEN AT A CONCENTRATION EQUAL TO ITS KD

50% OF RECEPTORS WILL BE OCCUPIED WHEN A DRUG IS GIVEN AT A CONCENTRATION EQUAL TO ITS KD



Dose-Response Curve

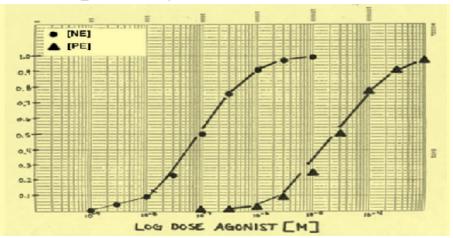
- 1) Dose-response relationships are a common way to portray data in both basic and clinical science.
- 2) To present the data, the concentration of the drug is plotted on the x-axis and the effect would be presented on the y-axis. A plot of drug concentration ([D]) versus effect (E/Emax in the graphs) is a rectangular hyperbola.


Pharmacology

Spare Receptors

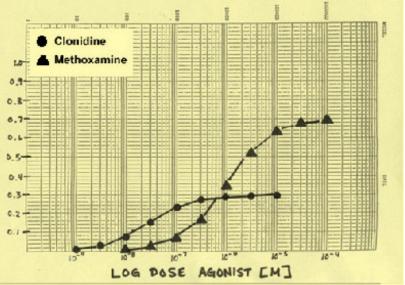
- > allow maximal response without total receptor occupancy – increase sensitivity of the system.
- spare receptors can bind (and *internalize*) extra ligand preventing an exaggerated response if too much ligand is present.

Pharmacology


The receptor theory assumes that all receptors should be occupied to produce a maximal response. In that case at half maximal effect EC50=kd. Sometimes, full effect is seen at a fractional receptor occupation.

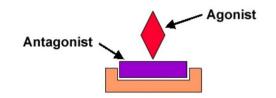
Potency refers to the concentration of a drug required to produce a given physiologic effect. Drugs with high receptor affinity will exhibit greater potency than those with lower affinity

Norepinephrine (NE) has a higher affinity for a receptor than does phenylephrine(PE). The ED50 for norepinephrine is 100 nM while the ED50 for phenylephrine is 35,000 nM. Norepinephrine would be said to have greater **potency** than phenylephine.


Pharmacology

Efficacy is often used to describe the maximal level of response a drug can produce.

Norepinephrine would have a greater efficacy than methoxamine which in turn would have a greater efficacy than <u>**Clonidine**</u>.

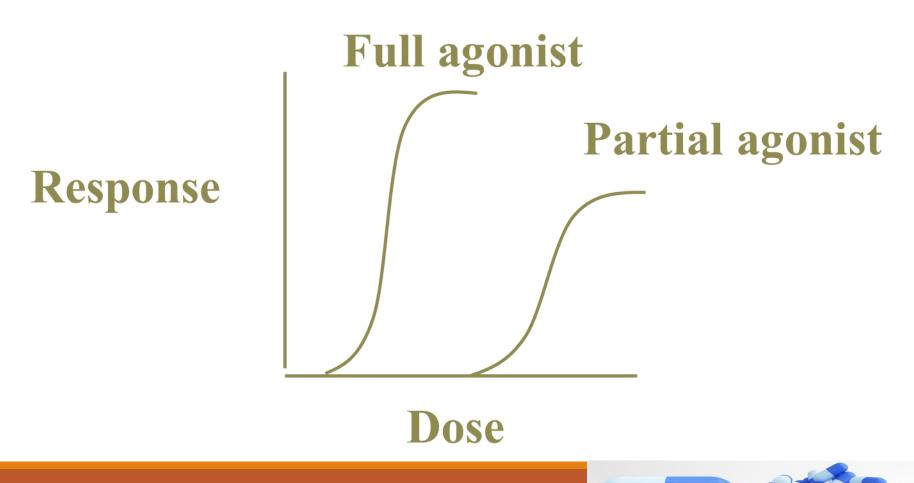


Agonist and Antagonist

- > Agonist has affinity plus intrinsic activity
- > Antagonist has affinity but no intrinsic activity
- > Partial agonist has affinity and *less* intrinsic activity
- Competitive antagonists can be overcome

Antagonists bind to receptors but do not lead to receptor activation

➤ Agonist: Drugs that interact with <u>and</u> activate receptors; they possess <u>both affinity</u> and efficacy.


- **> Two types:**
 - Full agonist: an agonist with maximal efficacy
 - **Partial agonist:** an agonist with less then maximal efficacy

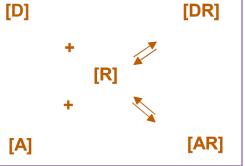
Agonist Dose Response Curves

Dr. Chuon Vibol - General Pharmacology-Dentistry/UP

Antagonist Drug

Antagonists interact with the receptor but do <u>NOT</u> change the receptor.

- > They have affinity but <u>NO</u> efficacy
- > Two types:
 - Competitive
 - Noncompetitive



Antagonist Drug

➤ The antagonist [A] and agonist [D] are competing for the same limited number of receptors [R].

Amount of agonist bound to the receptor in the presence of an antagonist = [D]
[D]+Kd(1+[A]/Ka)

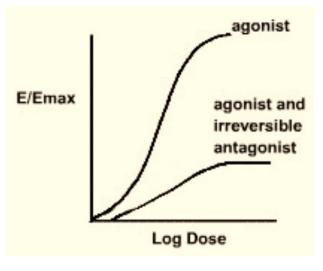
Antagonist Drug

Examine the effect of Terazosin (Ka= 1.0 nM) on the occupancy of the alpha1adrenergic receptor by epinephrine (= K_D 100 nM).

Epinephrine	% Receptors	%Receptors	% Receptors
	Occupied	Occupied	Occupied
	(Teraz = 0)	(Teraz = 1nM)	(Teraz = 10 nM)
50.0 nM	?	?	?
100.0 nM	?	?	?
400.0 nM	?	?	?
1000.0 nM	?	?	?

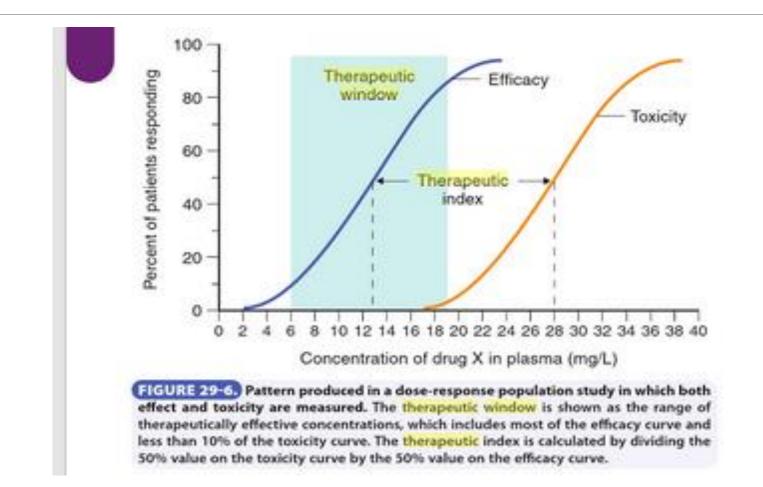
Dr. Chuon Vibol - General Pharmacology-Dentistry/UP

- 1) Reversible binding to the receptor.
- 2) The blockade can be overcome by increasing the agonist concentration.
- 3) The maximal response of the agonist is not decreased.
- 4) The agonist dose-response curve in the presence of a competitive antagonist is displaced to the right, parallel to the curve in the absence of agonist.



Non-competitive Antagonist

- > Drug binds to receptor and stays bound
- Irreversible does not let go of receptor
- Produces slight dextral shift in the agonist DR curve in the low concentration range
- > This looks like competitive antagonist
- But, as more and more receptors are bound (and essentially destroyed), the agonist drug becomes incapable of eliciting a maximal effect



- ➤ The Therapeutic Index is the ratio between the dosage of a drug that produce a toxic (or lethal) effect and the dosage that produce a therapeutic effect.
- > The dose required to produce death in 50% of a population is referred to as the LD50.
 - ED50 Median Effective Dose 50; the dose at which 50 percent of the population or sample manifests a given effect; used with quantal DR curves
- **TD50** Median Toxic Dose 50 dose at which 50 percent of the population manifests a given toxic effect
- LD50 Median Toxic Dose 50 dose which kills 50 percent of the subjects

Therapeutic Index =

ED50 The ED50 for the beneficial effect of blood pressure lowering is 0.4 nM while the LD50 is 40 nM. Therefore, the therapeutic index will be:

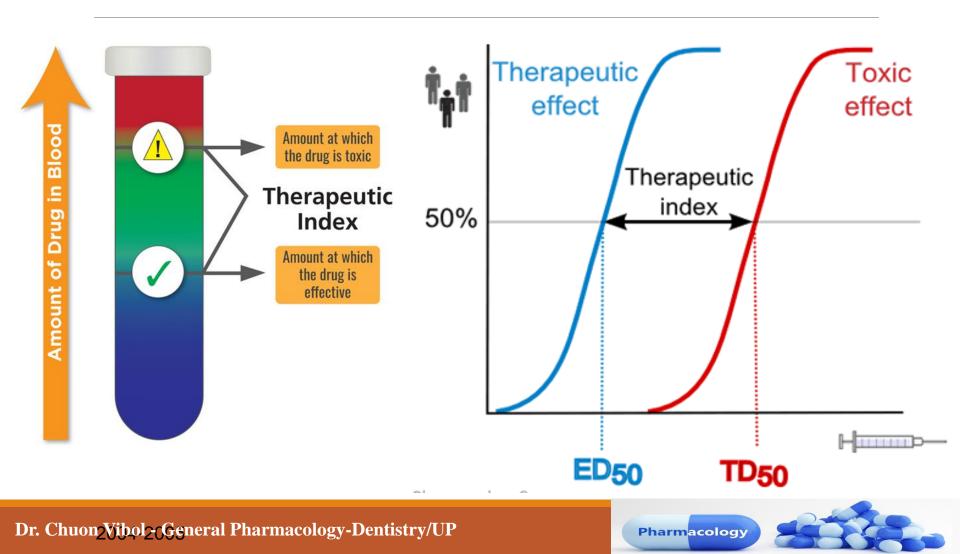
$$TI = \underline{LD50}$$

ED 50
$$TI = \underline{40.0 \text{ nM}}$$

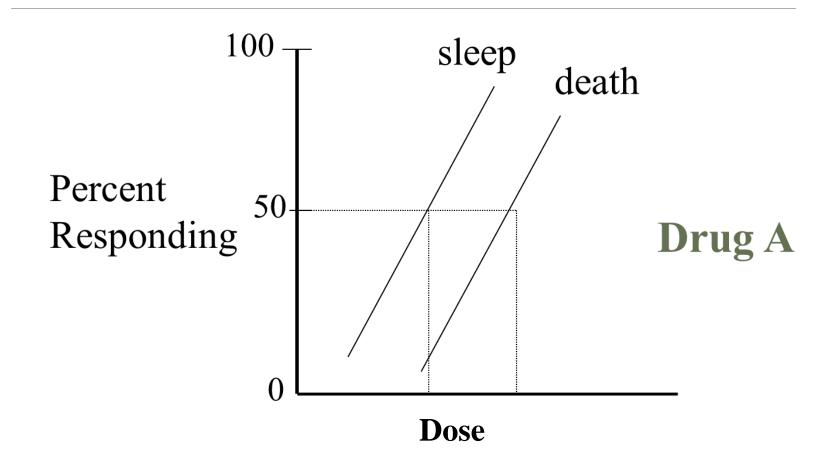
0.4 nM

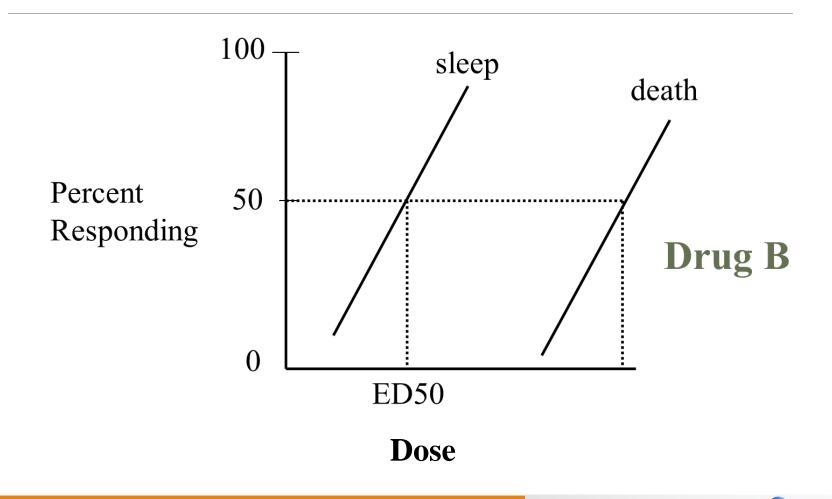
$$TI = 100$$

Dr. Chuon Vibol - General Pharmacology-Dentistry/UP


Pharmacology

TD50 or LD50





 \succ The higher the **TI** the better efficacy of the drug.

TI's vary from: 1.0 (some cancer drugs)
 to: >1000 (penicillin)

Drugs acting on the same receptor or enzyme system often have the same TI: (eg 50 mg of Hydrochlorothiazide about the same as 2.5 mg of Indapamide).

REFERRENCE

A Textbook of Clinical Pharmacology and Therapeutics by James. M Rither, Lionel D Lewis, Timothy GK Man, Albert Ferro. 5th Edit., 2008. Henry H. and Babara N., Pharmacology: An Introduction. 6th Edit., 2012. Michael J. Neal, Medical Pharmacology at a Glance. 7th Edit., 2012. Craig C.R and Stitzel R.R, Modern Pharmacology. 5th Edit., 2008. Teferra A., Srinivasa A. Rao *et al.*, Pharmacology. 2004 Katzung B.G, Basic and Clinical Pharmacology, Prentice Hall International.

Any questions?

