

PRINCIPALE OF PHARMACOKINETIC

Lecturer: Dr. Chuon Vibol, Pharm.D, MIPH/Msc.

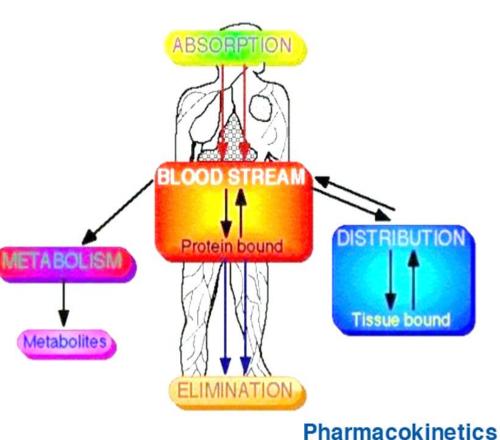
Academic Year: 2021 - 2022

Pharmacology

COURSE OBJECTIVES

After studying this chapter, student will be able to:

- Understand the concept of pharmacokinetic clearly.
- Describe the main process of **ADME**:
 - Absorption
 - Distribution
 - Metabolism
 - Elimination



COURSE OUTLINE

- Definition of Pharmacokinetic
- Absorption
- Distribution
- Metabolism
- Elimination

DRUG RESEARCH & DEVELOPMENT

DEVELOPMENT PHASE

Drug discovery and development

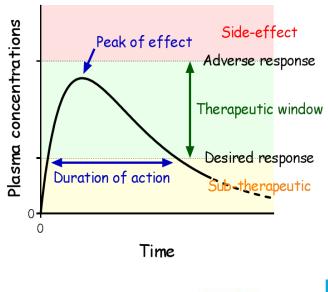
- •10-15 years to develop a new medicine
- •Likelihood of success: 10%
- •Cost \$800 million 1 billion dollars (US)

PHARMACOKINETIC

What does it mean?

- <u>Pharmacokinetics</u> is the study of how a drug reaches its target in the body and how it is affected on that journey. <u>Ex:</u> Effect of the body on the drug.
- The study of the disposition of a drug. The disposition of a drug includes the processes of <u>ADME.</u>
- The fundamental characteristic of pharmacokinetic study is drug removal from the body.
- Pharmacokinetics cannot be studied alone without a similar equal response that is produced by the body upon receiving the drug, called as

PHARMACODYNAMICS

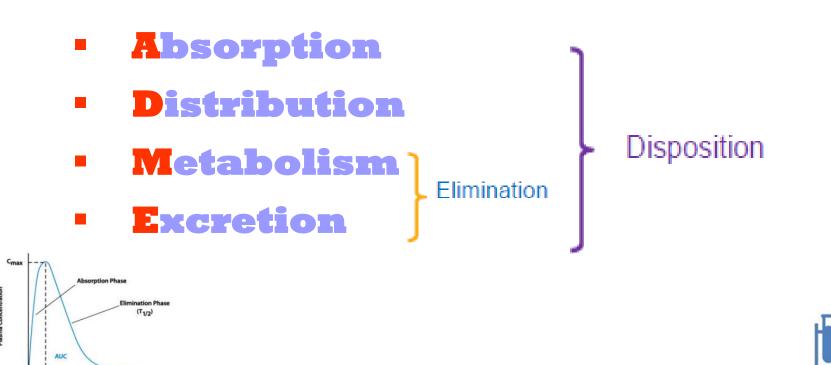


Why do we study Pharmacokinetic (PK)?

- We administer drugs (dose) because we seek a certain effect (response), but a complex chain of events links the administered dose to the observed response.
- Patients may suffer:
 - Toxic drugs may accumulate
 - Useful drugs may have no benefit because doses are too small to establish therapy.
 - A drug can be rapidly metabolized

Pharmacology

Pharmacokinetics

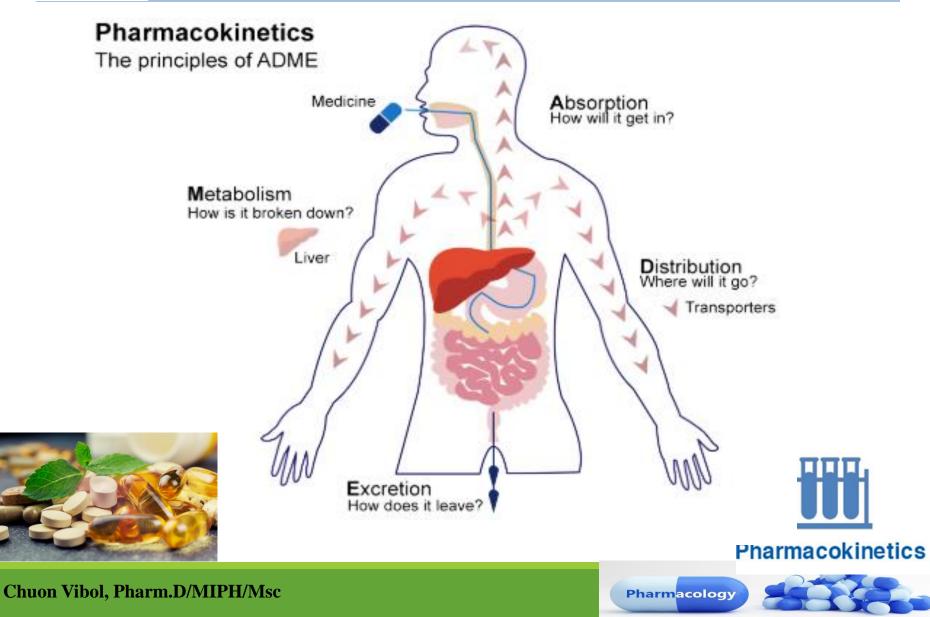

PHARMACOKINETIC

Pharmacokinetics

Pharmacology

• The processes that characterize PK are summarized in the **ADME** scheme.

Chuon Vibol, Pharm.D/MIPH/Msc


Time

Tmax

PHARMACOKINETIC

These four features (ADME) include:

- <u>Absorption</u>: The rate and extent to which drug is absorbed by the body.
- <u>Distribution</u>: The rate and extent to which drug is distributed in the bodily fluids and tissues from distinct absorption sites. This is expressed by volume of distribution (Vd).
- <u>Metabolism</u>: The rate and extent to which drug undergo enzymatic action required to break down the drug into its active form or proceed to elimination.
- <u>Elimination</u>: It is another important key feature describing rate and extent to which drug is eliminated from the body after attaining peak plasma conc. And producing its action.

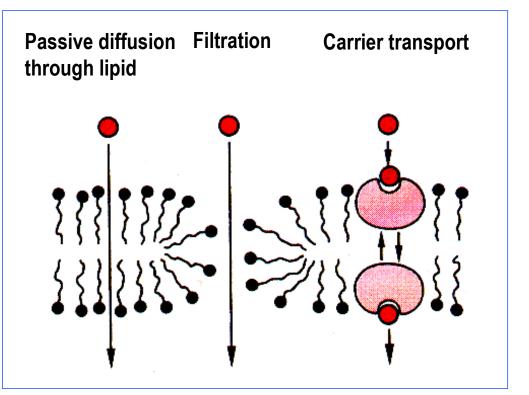
- Absorption is the entry of drug with blood via the biological membrane from the site/route of administration.
- The process by which drug proceeds from the site of administration to the site of measurement (blood stream) within the body.
- Necessary for the production of a therapeutic effect.
- Most drugs undergo gastrointestinal absorption. This is extent to which drug is absorbed from gut lumen into portal circulation
- **Exception:** IV drug administration

IV Route vs Oral Route

I.V Drug	Oral Drug
Immediately	Delayed
completely	incomplete

The Process of Absorption:

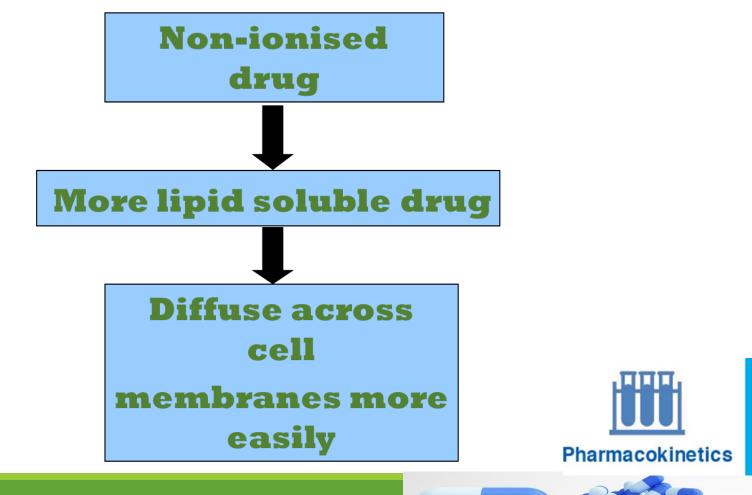
- The most common and preferred method of administration is the oral route.
- Absorption depends on:
 - Hydrophilic/hydrophobic properties, polarity and ionization of the drug
 - Passage through membranes to reach the blood
 - Passive diffusion of lipid soluble species



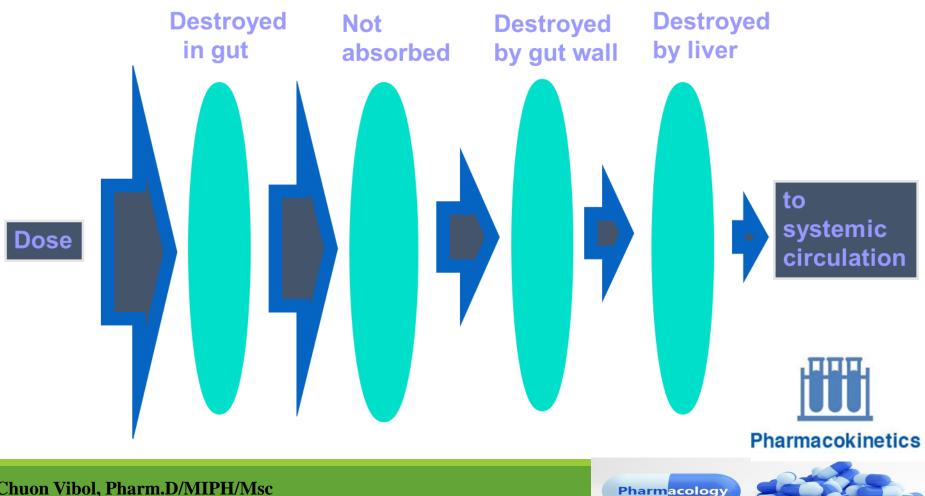
The Process of Absorption:

Passive transport:

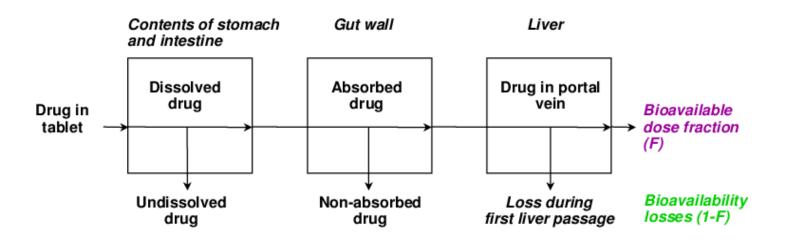
- Passive diffusion
- Filtration
- Specialized transport:
 - Carrier transport
 - Active transport
 - Facilitated diffusion
 - Pinocytosis...etc.



Absorption & Ionization


Pharmacology

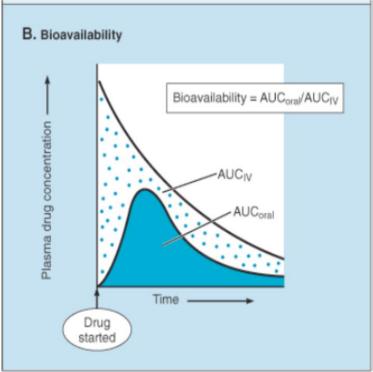
First Pass Metabolism



BIOAVAILABILITY

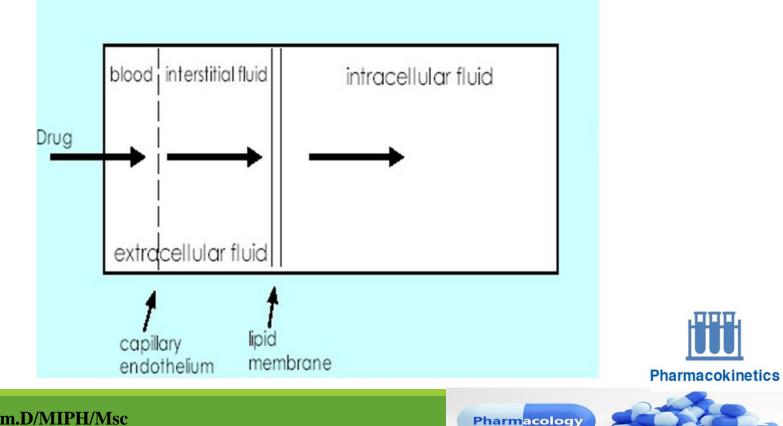
- **Bioavailability:** the fraction of the administered dose reaching the systemic circulation.
- **Significance:** Dosage of drugs with a high hepatic extraction.

Pharmacology



DETERMINATION OF BIOAVAILABILITY

- A drug given by the intravenous route will have an absolute bioavailability of 1 (F=1 or 100% bioavavailable).
- While drugs given by other routes usually have an absolute bioavailability of less than one.
- The absolute bioavailability is the area under curve (AUC) non-intravenous divided by AUC intravenous.

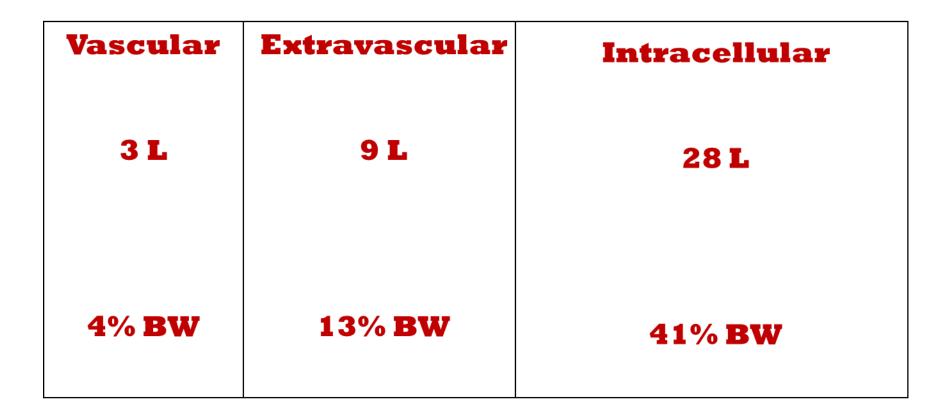

[©] Elsevier. Brenner: Pharmacology 2e - www.studentconsult.com

• **Distribution:** The movement of drug from the blood to and from the tissues.

- Distribution is determine by:
 - Partitioning across various membranes
 - Binding to tissue components
 - Sinding to blood components (RBC, plasma, protein)

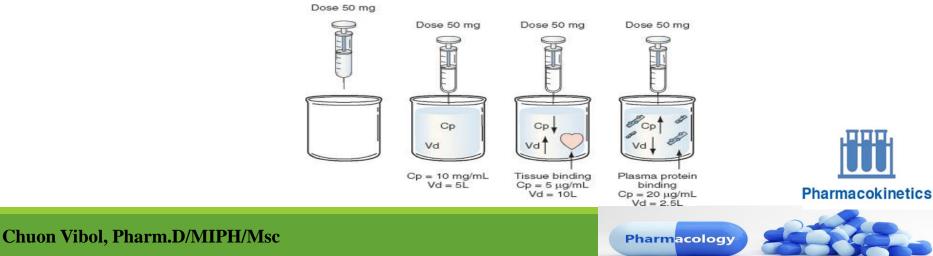
Physiological volume

- All of the fluid in the body (referred to as the total body water), in which a drug can be dissolved, can be roughly divided into three compartments:
 - intravascular (blood plasma found within blood vessels)
 - interstitial/tissue (fluid surrounding cells)
 - intracellular (fluid within cells, i.e. cytosol)
- The distribution of a drug into these compartments is dictated by it's physical and chemical properties



DISTRIBUTION

TOTAL BODY WATER



VOLUME OF DISTRIBUTION (Vd)

- Volume of Distribution (V_d) is the amount of drug in body/plasma drug concentration.
- <u>Volume of distribution</u> (V_d) is a theoretic concept that relates the amount of drug in the body (Dose) to the concentration (C) of drug that is measured (in blood, plasma, and unbound in tissue water)

DISTRIBUTION

VOLUME OF DISTRIBUTION (Vd)

FORMULA:

The volume of distribution is given by the following equation:

 $V_D = \frac{\text{total amount of drug in the body}}{\text{drug blood concentration}}$

- In expressing the apparent Vd in terms of % body weight, a <u>1L volume</u> is assumed to be equal to the weight of 1kg.
 - For example, if the V_D is 3500 ml for a subject weighing 70 kg, the V_D expressed as percent of body weight is

$$\frac{3.5 \text{ kg}}{70 \text{ kg}} \times 100 = 5\% \text{ of body weight}$$

VOLUME OF DISTRIBUTION (Vd)

Volume of Distribution for Some Drugs:

DRUG Vd (L)

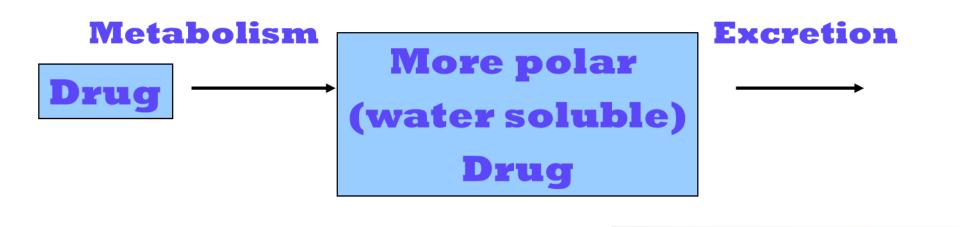
- Cocaine 140
- Clonazepam 210
- Amitriptyline 1050
- Amiodarone ~5000

DISTRIBUTION

VOLUME OF DISTRIBUTION (Vd)

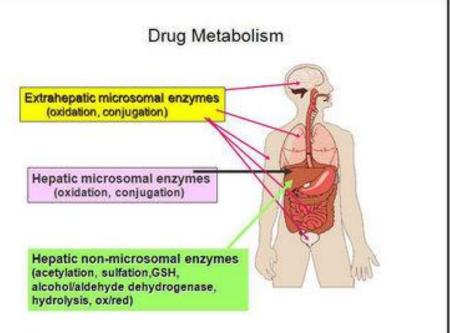
Factors Affecting Drugs Vd:

- **Blood flow** (rate varies widely as function of tissue):
 - Muscle = slow
 - Organs = fast
- **Capillary structure:** Most of capillary are "leaky" and do not impede diffusion of drugs
- **Blood-brain barrier (BBB)** formed by high level of tight junctions between cells (distributed by osmotic)


Plasma Protein Binding

- Many dugs bind to plasma proteins in the blood steam
- Plasma protein binding limits distribution
- A drug that binds protein diffuses less efficiently, than a drug that doesn't.

- Defined as the conversion from one chemical form to another.
- A process by which lipid soluble drugs are converted to water soluble for their excretion
- Enzymes are typically involved in metabolism

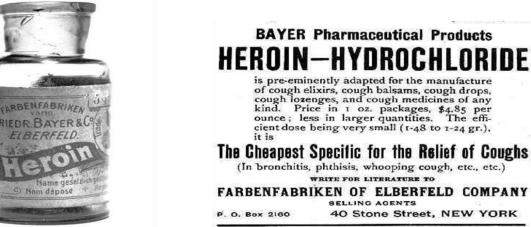

Objective:

- To inactive pharmacological effect
- To enhance pharmacological effect (diazepam to oxazepam)
- To convert prodrugs into active drugs:
 - Aspirin to salicylic acid
 - Codeine to morphine

Sites

- The major site: Liver (microsomal enzyme systemic hepatocyte)
- Secondary organs:
 - Intestines
 - Stomach
 - Blood
 - Brain, Lung

Pharmacology


- Kidney, - Skin (epithelial cell)

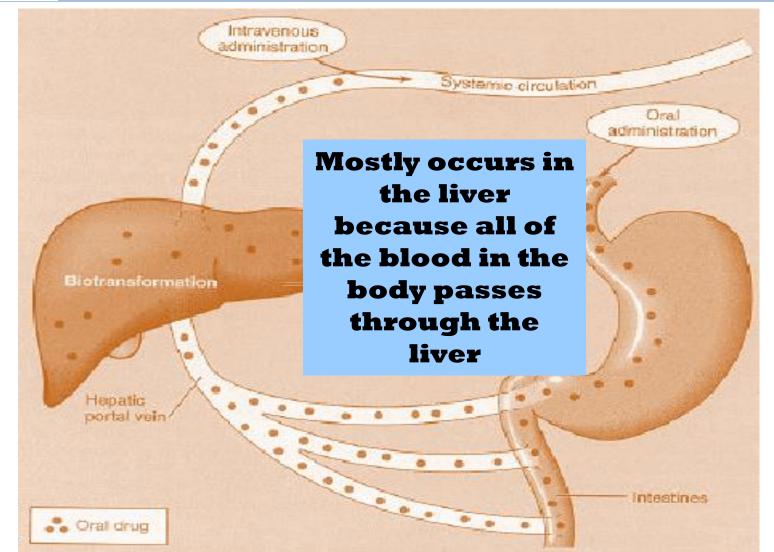
METABOLISM

- From 1898 through to 1910 heroin was marketed as a non-addictive morphine substitute and cough medicine for children. Bayer marketed heroin as a cure for morphine addiction
- Heroin is converted to morphine when metabolized in the liver.

Phases of Metabolism

- Convert parent compound into a more polar (hydrophilic) metabolite by adding or unmasking functional groups. Ex: Oxidation
- Often these metabolite are inactive
- > May be sufficiently polar to be excreted readily

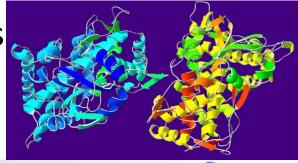
Phases of Metabolism


- Conjugation with endogenous substrate to further increase aqueous solubility.
- Conjugation with glucuronide, sulfate, acetate, amino acid

METABOLISM

Chuon Vibol, Pharm.D/MIPH/Msc

11



The Most important Enzymes

- Microsomal Cytochrome P450 (monooxygenase family of enzymes, which oxidize drugs)
- Act on structurally unrelated drugs
- Metabolize the widest range of drugs

CYP Family of Enzymes

- Found in liver, small intestine, lung, kidney and placenta.
- Major source of catalytic activity for drug oxidation
- Estimated that 90% or more of human drug oxidation can be attribute to 6 main enzymes:
 - 1- CYP1A22- CYP2D63-CYP2C94- CYP2C95- CYP2C196-CYP3A4

Pharmacology

 In different people & different population and activity of CYP oxidases differs.

METABOLISM

Human Liver P450 Enzymes There are numerous P450 isoforms of which the following are important:

P450 Isoform	Percentage of human liver (%)
CYP1A2	15
CYP2A6	4
СҮР2В6	1
CYP2C9	20
CYP2D6	5
CYP2E1	10
СҮРЗА4	30

CYP3A4 account for >50% of all prescribed metabolism

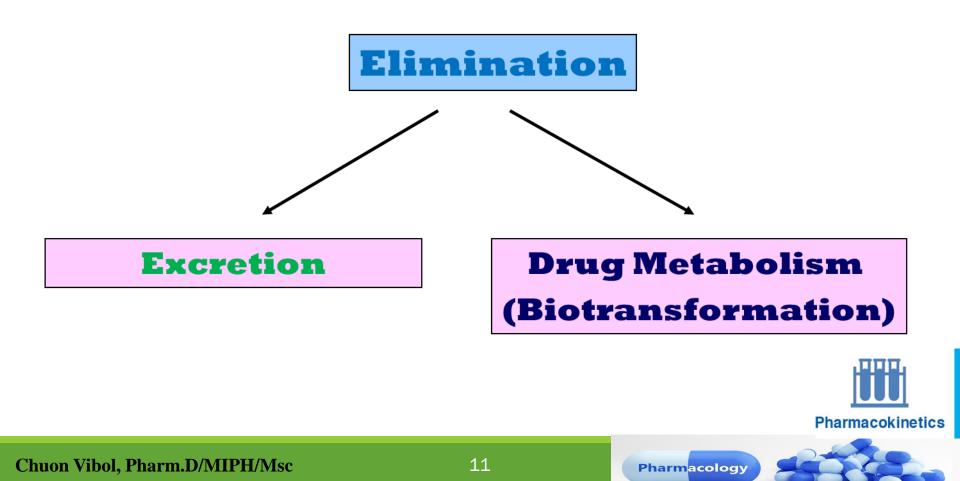
Chuon Vibol, Pharm.D/MIPH/Msc

11

METABOLISM

Inhibitor and Inducer of Microsomal Enzymes

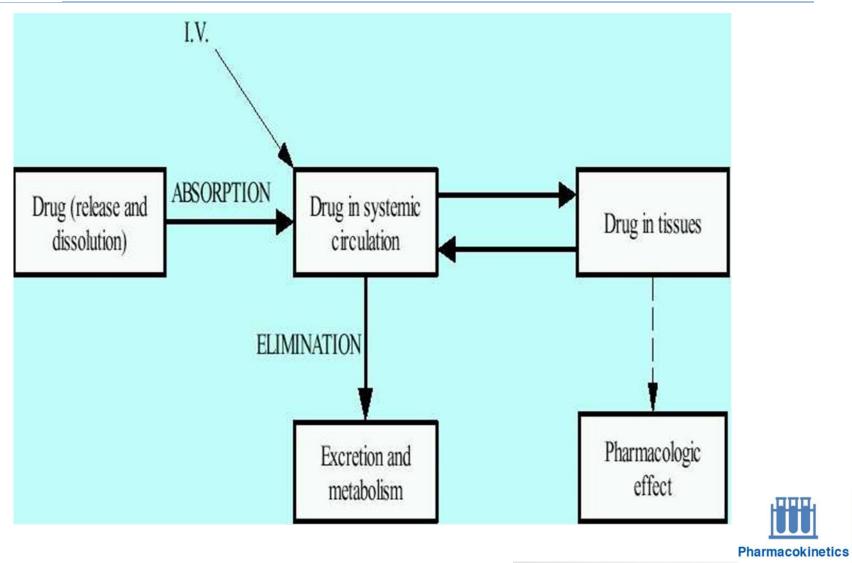
- Inhibitors: Cimetidine prolongs action of drugs or inhibits action of those biotransformed to active agents (pro-drugs)
- Inducers: Barbiturates, carbamazepine shorten action of drugs or increase effects of those biotransformed to active agents.
- Blockers: Acting on non-microsomal enzymes (MAOI, Anticholinesterase drugs)



ELIMINATION

• The irreversible removal of the parent drugs from the body.

- The main process that body eliminates "unwanted" substance.
- Most common route-biliary or renal
- Other routes lung (through exhalation), skin (through perspiration)
- Lipophilic drugs may require several metabolism steps before they are excreted.

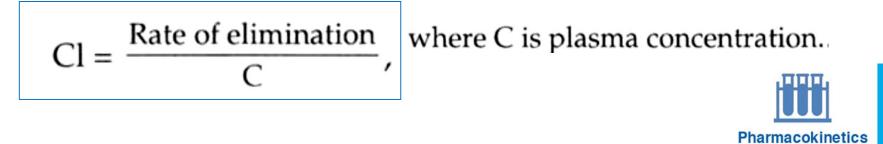


Pharmacokinetics

Chuon Vibol, Pharm.D/MIPH/Msc

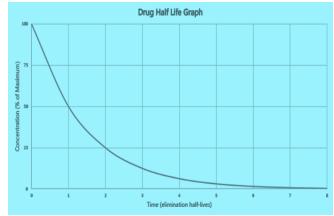
11

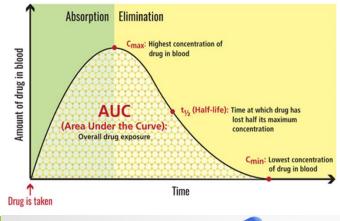
Pharmacology



CLEARANCE

- Definition: Clearance may be define as the rate of urinary exertion divided by the average concentration of excreted substance in the plasma.
- Clearance can be calculated as:





EXCRETION

- It is defined as the time it takes for the concentration of the drug in the plasma or the total amount in the body to be reduced by 50%. In other words, after one half-life, the concentration of the drug in the body will be half of the starting.
- In general, the effect of the drug is considered to have a negligible therapeutic effect after 4 half-lives, that is, when only 6.25% of the original dose remains in the body.

Pharmacokinetics

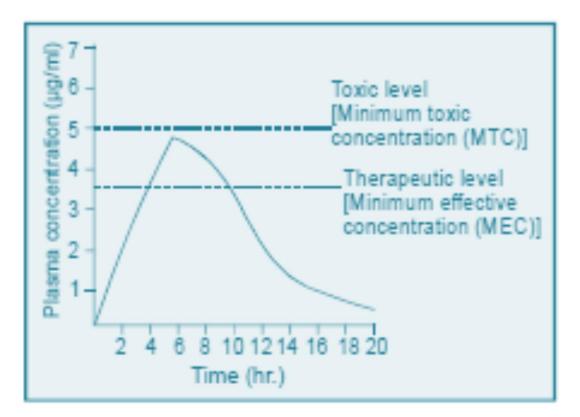
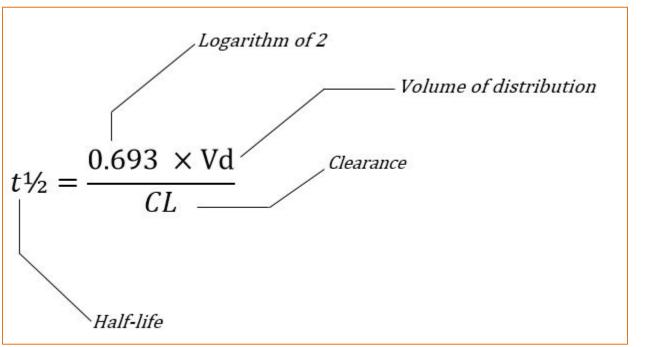


FIg. 1.4.4: Drug concentration in plasma vs time curve of drug administered orally.

Chuon Vibol, Pharm.D/MIPH/Msc

Example:

- Taking a <u>100 mg dose</u> of an intravenous drug with a <u>half-life of 15</u> <u>minutes</u> as an example, the following is true:
 - 15 minutes after the drug administration, 50 mg of the drug remains in the body.
 - ➢ 30 minutes after the drug administration, 25 mg of the drug remains in the body.
 - ➢ 45 minutes after the drug administration, 12.5 mg of the drug remains in the body.
 - ➤ 1 hour after the drug administration, 6.25 mg of the drug remains in the body.



FORMULA:

Pharmacology

Chuon Vibol, Pharm.D/MIPH/Msc

EXCRETION

HALF-LIFE OF A DRUG

FORMULA:

The elimination half life (t¹/₂) from elimination phase is

$$t^{1/2} = \frac{\text{Log } 2}{k}$$

k = Elimination rate constant (total amount of drug in the body removed per unit time).

$$k = \frac{\mathrm{CL}}{\mathrm{V}}$$

Clearance is the measure of the body's ability to eliminate a drug.

Therefore $t^{1/2} = 0.693 \times \frac{V}{CL}$

And, having known the biological halflife ($t\frac{1}{2}$), the elimination rate constant (*k*E) can be calculated

 $kE = 0.693/t^{1/2}$

Definition

 Drug interactions may be defined as an alteration in duration and/or onset of action of the pharmacokinetic and/or pharmacodynamics of one drug produced by another drug.

General Aspects

- The multiple drug therapy produced a combined effect, which may be antagonistic or synergistic in nature.
- The drug may interact with the another drug at any point during their absorption, distribution, metabolism and excretion.

DRUG INTERACTON

i. Interaction due to the formation of chelate complex Antacids Tetracycline, isoniazid, atenolol, Decreased absorption			Drug displaced	Displacing agent
Antacids	chlorpromazine penicillamine		5 1	1 3 3
	ranitidine		Coumarin	Diazoxide, ethacrynic acid,
Antacids Bishydroxycoumarin		Increased absorption		
Cholestyramine	Warfarin, phenylbutazone, di			phenylbutazone, NSAIDs
Activated charcoal	cephalexin and chlorothiazid Tolbutamide, theophylline, pl		Tolbutamide	Dicumarol, phenylbutazone
digoxin, carbamazepine, valpr			1010 diterritid c	prentine of pricity is a desire
Activated charcoal Piroxicam, theophylline & pheno		enobarbital Increased absorption	Phenytoin	Tolbutamide, NSAIDs
Mineral oils Fat soluble vitamins		Decreased absorption		
Iron preparation Methyldopa		Decreased absorption	Diazepam	Heparin
ii. Interaction due to the alteration in gastric pH Antacids Cimetidine		Decreased absorption		
Cimetidine	Tetracycline	Decreased absorption	NSAIDs = Nonsteroidal antiinflammatory drugs.	
iii. Interaction due to inc	rease in gastric motility			
Metoclopramide	Digoxin, cimetidine	Decreased absorption	Drug (inducing part) Drug induced
Metoclopramide	Chlorothiazide, acetaminoph		Drug (inducing part) Drug muuceu
iv. Interaction due to decrease in gastric motility		Chloral hydrate	Bishydroxycoumarin	
Antacids Isoniazid, phenytoin, propranol		olol and Decreased rate of	· · · · · · · · · · · · · · · · · · ·	· · ·
	benzodiazepines	absorption	Phenobarbital	Bishydroxycoumarin,
Amitriptyline Bishydroxycoumarin		Increased absorption		digitoxin, phenylbutazone,
v. Interaction due to alteration of gut				
Cimetidine	Lidocaine, propranolol, verag imipramine	pamil, Increased absorption		phenytoin
	impramine		Phenytoin	Carbamazepine, cimeti-
Drug affected	Drug interacting	Effect		dine, theophylline, oral
Gastrointestinal system				unie, incoprignine, orai
Carbenoxolone	Amiloride, spironolactone	Inhibition of ulcer healing.	Drug causing inhibition Drug inhibited	
Cimetidine	Antacids	Reduced absorption if taken		5
		simultaneously.	Bishydroxycoumarin	Tolbutamide
Metoclopramide Anticholinergic drugs such as atropine, benzhexol, propantheline, narcotic analessics			Disulfiram	Discussion, the askulling
		effects on gastrointestinal activity.	Disumram	Phenytoin, theophylline,
	analgesics			warfarin
Cardiovascular system			Isoniazid	Phenytoin
Antiarrhythmic drugs	Any combination of two or more	Increased myocardial depression. Hyperkalaemia, increased risk of ventricular arrhythmias due to		
Disopyramide	Potassium salts, amiodarone		Phenylbutazone	Tolbutamide, phenytoin
		prolongation of QT interval.		
				Pharmacokine

Chuon Vibol, Pharm.D/MIPH/Msc

REFERRENCE

- A Textbook of Clinical Pharmacology and Therapeutics by James. M Rither, Lionel D Lewis, Timothy GK Man, Albert Ferro. 5th Edit., 2008.
- Henry H. and Babara N., Pharmacology: An Introduction. 6th Edit., 2012.
- Michael J. Neal, Medical Pharmacology at a Glance. 7th Edit.,2012.
- Craig C.R and Stitzel R.R, Modern Pharmacology. 5th Edit., 2008.
- Teferra A., Srinivasa A. Rao et al., Pharmacology. 2004
- Katzung B.G, Basic and Clinical Pharmacology, Prentice Hall International.

Any questions?

Chuon Vibol, Pharm.D/MIPH/Msc

